Quasiperiodic, periodic, and slowing-down states of coupled heteroclinic cycles.

نویسندگان

  • Dong Li
  • M C Cross
  • Changsong Zhou
  • Zhigang Zheng
چکیده

We investigate two coupled oscillators, each of which shows an attracting heteroclinic cycle in the absence of coupling. The two heteroclinic cycles are nonidentical. Weak coupling can lead to the elimination of the slowing-down state that asymptotically approaches the heteroclinic cycle for a single cycle, giving rise to either quasiperiodic motion with separate frequencies from the two cycles or periodic motion in which the two cycles are synchronized. The synchronization transition, which occurs via a Hopf bifurcation, is not induced by the commensurability of the two cycle frequencies but rather by the disappearance of the weaker frequency oscillation. For even larger coupling the motion changes via a resonant heteroclinic bifurcation to a slowing-down state corresponding to a single attracting heteroclinic orbit. Coexistence of multiple attractors can be found for some parameter regions. These results are of interest in ecological, sociological, neuronal, and other dynamical systems, which have the structure of coupled heteroclinic cycles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinities of stable periodic orbits in systems of coupled oscillators.

We consider the dynamical behavior of coupled oscillators with robust heteroclinic cycles between saddles that may be periodic or chaotic. We differentiate attracting cycles into types that we call phase resetting and free running depending on whether the cycle approaches a given saddle along one or many trajectories. At loss of stability of attracting cycling, we show in a phase-resetting exam...

متن کامل

Desynchronization transitions in nonlinearly coupled phase oscillators

We consider the nonlinear extension of the Kuramoto model of globally coupled phase oscillators where the phase shift in the coupling function depends on the order parameter. A bifurcation analysis of the transition from fully synchronous state to partial synchrony is performed. We demonstrate that for small ensembles it is typically mediated by stable cluster states, that disappear with creati...

متن کامل

Heteroclinic Cycles in Rings of Coupled Cells

Symmetry is used to investigate the existence and stability of heteroclinic cycles involving steady-state and periodic solutions in coupled cell systems with Dn-symmetry. Using the lattice of isotropy subgroups, we study the normal form equations restricted to invariant fixed-point subspaces and prove that it is possible for the normal form equations to have robust, asymptotically stable, heter...

متن کامل

Heteroclinic dynamics in a model of Faraday waves in a square container

We study periodic orbits associated with heteroclinic bifurcations in a model of the Faraday system for containers with square cross-section and single-frequency forcing. These periodic orbits correspond to quasiperiodic surface waves in the physical system. The heteroclinic bifurcations are related to a continuum of heteroclinic connections in the integrable Hamiltonian limit, some of which pe...

متن کامل

Heteroclinic Networks with Odd Graph Structures for Large Ensembles of Globally Coupled Oscillators

Robust heteroclinic dynamics have been observed in symmetric systems of coupled equations and they are proving of much interest from both an abstract mathematical perspective and when applied to real physical systems. Of particular interest are coupled phase oscillators, where heteroclinic dynamics between partially synchronized states may have applications to novel computation. We prove the ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 85 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2012